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Abstract. Artificial intelligence (AI) has emerged as a transformative force in 

various fields, including oral health. At the beginning of this chapter, readers are 

provided with basic information about machine learning (ML) tasks, deep learn-

ing models, and selected metrics. In addition, privacy issues and adversarial at-

tacks are briefly discussed before delving into the applications of AI in oral 

health. The primary objective of this chapter is to review the applications, bene-

fits, and challenges of integrating AI and specifically ML into oral health, includ-

ing the detection of oral cancers, dental caries, periodontitis and other conditions. 

The available evidence suggests that ML enables early detection, accurate diag-

nosis, personalized treatment planning and a better prediction of outcomes. In 

addition, AI tools reduce the likelihood of human error, thus improving standards 

in patient care while possibly lowering costs.  

Keywords: Oral Health, Machine Learning, Artificial Intelligence, Deep Learn-

ing, Dentistry, Oral Cancer, Dental Caries 

1 Introduction 

Artificial intelligence (AI), especially machine learning (ML) and its sub-field, deep 

learning (DL), have revolutionised several industries. DL has recently delivered cut-

ting-edge performance in speech processing, text analytics, and computer vision. The 

widespread use of AI algorithms across many fields has made these technologies indis-

pensable to daily life. Healthcare, a sector historically immune to significant techno-

logical upheavals, is now starting to be impacted by AI systems as well [1]. However, 

their application is associated with several problems and challenges, including safety, 

privacy and ethical considerations. Another major problem faced in AI applications in 

healthcare is the limited availability of representative, diverse and high-quality data, 
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which is crucial for training accurate and reliable ML models. The lack of enthusiasm 

to implement data exchange standards in wider healthcare industry is also hindering the 

efficacy of ML systems [1]. 

Recent studies on this topic include a scoping review conducted by Arsiwala-Schep-

pach et al. [2], published in 2023, which attempted to characterise the overall body of 

evidence concerning dental ML tasks. The review also assessed types of tasks, their 

distribution in different dental fields, the risk of bias and reporting quality, as well as 

the applied metrics. A similar work was done by Leite et al. [3] but it also investigates 

the applications of radiomics in the field of oral healthcare. The paper emphasizes the 

promising results achieved through the integration of radiomics and ML, showcasing 

their ability to improve accuracy, early detection, and personalized treatment strategies. 

The objective of this chapter is to conduct a comprehensive review of the applica-

tions of AI in oral health. Prior to that, section 2 provides the reader with basic infor-

mation about ML and DL, presenting common machine learning tasks, DL model ar-

chitectures and metrics, as well as considerations on privacy and adversarial attacks. 

2 Basics of machine learning for medical applications 

Massive amounts of data are produced in healthcare, and ML can assist in their pro-

cessing, which is challenging using “traditional methods”. The benefits of ML and DL 

have been particularly marked in medical image analysis, delivering human-level per-

formance across various fields, e.g. in clinical pathology, radiology, ophthalmology, 

and dermatology. Recent breakthroughs in ML techniques have yielded remarkable 

outcomes in tasks like organ recognition [4], interstitial lung disease classification [5], 

lung nodule detection [6], medical image reconstruction [7], and brain tumour segmen-

tation [8]. These advancements significantly impacted prognosis, diagnosis, therapy, 

and clinical workflow. 

2.1 Machine learning tasks in medical image analysis 

Image analysis is one of the primary applications of ML in the medical field. It aims to 

support clinicians and radiologists in determining the diagnosis. Various imaging meth-

ods can be analysed by ML, e.g. magnetic resonance imaging (MRI), radiography, com-

puted tomography (CT), ultrasound, and positron emission tomography (PET). The 

tasks performed include image enhancement, detection, classification, segmentation, 

retrieval, reconstruction, and treatment analysis, as discussed below and summarized 

in Table 1. 

Table 1. Methods in Medical Image Analysis 

Task Description 

Enhancement Techniques to improve the quality of medical images for better diagnosis 

Detection Detection and identification of specific abnormalities in medical images 
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Classification Categorization of medical images based on specific criteria or classes 

Segmentation Partitioning of medical images into meaningful regions or subjects 

Reconstruction Creation of interpretable images from raw medical data  

Report drafting Report generation from imaging modalities 

 

Enhancement is a critical pre-processing stage of improving the quality of medical 

images which may be compromised by artifacts and noise, which in turn hamper image 

analysis. Various DL models are used for denoising medical images, such as Convolu-

tional Denoising Encoders and Generative Adversarial Networks (GAN) [9]. These 

methods can also reduce the cost of MRI imaging, as they can obtain Super-Resolution 

(SR) from low-resolution MRI images which do not require such strong background 

magnetic field and associated pulse sequences [10] 

Detection is the process of identifying specific disease patterns or abnormalities, 

which conventionally involves expert radiologists and physicians. With a large number 

of reports to check daily, this requires much time and effort and is also susceptible to 

human error. On the other hand, DL-based methods have shown high potential in such 

task, and other ML methods such as k-Nearest Neighbour (k-NN) and Decision Trees 

(DT) were also successful in some cases, for example the detection of dermatological 

diseases [11]. 

Unlike (object) detection, which includes the localization of a pathology in the an-

alysed image, classification models only determine if the pathology is present or not. 

The performance of classifiers based on DL, such as Convolutional Neural Networks 

(CNN) has been shown to be superior to other non-learning-based methods. CNNs have 

been used extensively in recognizing body organs, abnormalities in medical imaging 

and modality classification [1]. DL models can also be used in a popular technique 

called Transfer Learning [12] – a model pre-trained on a big set of different data is 

applied and fine-tuned on a relatively modest set of target data, i.e. medical images. 

Methods like Synergic Deep Learning have also proven efficient in medical image clas-

sification [13]. A review article by Cai et al. [14] explored the use of transfer learning 

in image classification for detecting fundus related diseases. 

Segmentation is the process of dividing a picture into distinct non-overlapping por-

tions based on pre-defined criteria such as colour, texture, and contrast. In the study of 

medical image analysis, segmentation is crucial. Sarraf et al. [15] have segmented brain 

MRIs to facilitate early detection of Alzheimer’s disease. Various DL models, such as 

CNNs and Recurrent Neural Network (RNNs), are used for segmentation [16], and sev-

eral DL architectures are being developed for multi-modal and volumetric image seg-

mentation [17]. Segmentation will be further discussed in Section 2.1.1. 
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Medical image reconstruction helps generate clear and interpretable images from 

raw data. By speeding up the traditionally slow process of determining the original 

system inputs from the output results, DL models aid in the early detection while also 

saving time and reducing storage requirements. As an example, GANs were employed 

for the reconstruction of motion-corrupted brain MRI [18], a simplified scheme of the 

process is presented in Figure 1. 

Fig. 1. Reconstruction of motion-corrupted images using GAN [21]. 

Lastly, DL can be used for drafting the reports of image analysis. Writing the reports 

is very time-consuming and tedious, and it may be difficult for inexperienced radiolo-

gists and pathologists or even for experienced experts under time pressure. Various 

researchers have attempted to resolve this issue with the help of Natural Language 

Processing (NLP) models, which can be used to annotate clinical radiology or pathol-

ogy reports. Besides, DL architectures like Long Short-Term Memory (LSTM) network, 

CNNs and RNNs are developed for automatic report generation. Figure 2 shows a re-

port generated for chest X-rays. [19] 

Fig. 2. Frontal chest X-rays of a patient, alongside the findings and annotated tags [20]. 

2.1.1 Comparison of Object Detection and Segmentation 

Object detection is a computer vision technique that deals with locating object instances 

in images or videos [21]. You Only Look Once (YOLO) and Deep Residual Networks 
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are widely-used DL architectures for object detection, while popular training datasets 

include COCO, ImageNet etc. 

Segmentation categorizes the image at pixel level. Semantic segmentation classifies 

the pixels based on their semantic meaning, treating all objects within a category as one 

entity, as opposed to instance segmentation, which differentiates between individual 

instances of the same category, enabling more accurate identification of objects. 

Many real-world applications utilize semantic segmentation, such as self-driving 

cars, pedestrian detection, and diagnostic purposes. Other DL systems can use this 

pixel-level semantic data to grasp spatial positions and make judgements [22]. A pop-

ular segmentation model called U-Net was created for biomedical image segmentation 

and used for example in a study of oral lesions [23], where segmentation was performed 

along with object detection using YOLO. Figure 3 illustrates the differences between 

object detection and semantic segmentation. 

 

 

Fig. 2. On the left, object detection localizes the different objects in the scene using a bounding 

box. On the right, semantic segmentation labels every pixel of the identified objects but has no 

notion of separate instances of the same entity. 

 

The applications of instance segmentation include robotics, autonomous self-driv-

ing surveillance, medical diagnosis etc. [17]. A common instance segmentation frame-

work is Mask R-CNN [24]. For each object instance, it predicts a bounding box, a class 

name, and a pixel-level mask. The Detectron2 model developed by Facebook was used 

to construct Mask R-CNN with three distinct ResNet Feature Pyramid Network (FPN) 

backbones.  
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2.2 Deep Learning Architectures 

In this subsection, DL architectures including DenseNet, ResNet, U-Net, Mask R-CNN, 

and YOLO (Figure 4) will be presented in detail, as they have been demonstrated to be 

very successful in various oral health applications.  

 

Fig. 4. DL architectures frequently used in oral health. 

DenseNet, an abbreviation of Dense Convolutional Network, is a deep learning ar-

chitecture that has gained significant attention and popularity in computer vision. 

DenseNet differs from traditional CNNs by introducing direct connections between 

every layer, creating a densely connected network. These connections enable each layer 

to receive direct input from all preceding layers, resulting in feature reuse and enhanc-

ing gradient flow. This architecture promotes more robust feature propagation, encour-

ages feature extraction at multiple scales, and improves overall network efficiency. 

DenseNet has demonstrated impressive performance on various visual recognition 

tasks, often achieving state-of-the-art results with fewer parameters than other models. 

Its dense connectivity and efficient parameter usage make it an appealing choice in all 

computer vision tasks. Figure 5 presents a diagram representing the DenseNet architec-

ture.  

 

 

Fig. 5. A dense connection mode [25]. 

Image source - https://www.hindawi.com/journals/bmri/2022/2384830/fig7/ 
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ResNet, short for Residual Neural Networks, was proposed by He et al. [26] and has 

since become a cornerstone in many state-of-the-art image classification and object 

recognition tasks. Traditional deep neural networks suffer from the degradation prob-

lem, where the model's accuracy decreases as the depth increases. ResNet addresses 

this issue by introducing skip connections that allow information to flow directly from 

one layer to another, bypassing a few intermediate layers. ResNet allows the training 

of very deep neural networks with hundreds or even thousands of layers (Figure 6). 

Fig. 6. ResNet architecture [26]. 

 

U-Net is a widely used CNN architecture designed specifically for image segmen-

tation tasks. U-Net’s name is derived from its U-shaped architecture, which consists of 

an encoder path and a corresponding decoder path. The encoder path performs 

downsamplingoperations to extract high-level features and capture contextual infor-

mation from the input image. The decoder path then uses upsampling and skip connec-

tions to recover spatial information and generate segmentation masks with fine-grained 

details. The skip connections enable the network to fuse low-level and high-level fea-

tures, facilitating precise localization of objects. Figure 7 depicts the U-net architecture. 
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Fig. 7. Structure of U-Net architecture [27] 

Mask R-CNN, i.e. Mask Region-based Convolutional Neural Network, is a state-of-

the-art DL model that combines object detection and instance segmentation abilities. 

The model consists of two main components: a region proposal network (RPN) that 

generates potential object regions and a network head that simultaneously predicts 

bounding box coordinates, class labels, and object masks. By incorporating a fully con-

volutional network into the architecture (Figure 8), Mask R-CNN enables accurate in-

stance segmentation while maintaining real-time inference speeds. 

Fig. 8. Mask R-CNN framework [17]. 

 

YOLO, You Only Look Once in full, is an object detection architecture that has 

gained popularity for its real-time performance and high accuracy. It was introduced by 

Redmon et al. [28] in 2015. The key idea behind YOLO is to approach object detection 

as a single regression problem. The image is divided into a grid and a CNN predicts 

bounding boxes and class probabilities for each grid cell. As a result, YOLO performs 

object detection in one pass and simultaneously operates on the entire image, making 

it highly efficient. Figure 9 is a simple representation of how YOLO architecture works. 
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Fig. 9. YOLO architecture [28]. 

2.3 Selected metrics used for the evaluation of deep learning models 

The performance of object detection and segmentation models is commonly assessed 

using the average precision (AP) metric [21], which is defined as the area under the 

precision-recall curve. Precision, which corresponds to the positive predictive value, is 

the ratio of true positives (TP) to the sum of TP and false positives (FP), while recall 

(sensitivity) is the ratio of TP to the sum of TP and false negatives (FN). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

For a prediction to considered as TP, the predicted class must be correct and the 

intersection over union (IoU) between the ground truth and the prediction must exceed 

a certain threshold. If the predicted class is inaccurate or if IoU drops below the thresh-

old, the prediction is categorised as FP. On the other hand, FN predictions mean that an 

object was not identified despite being present in the image. With these defined, AP 

can be calculated using the following equation: 

 

𝐴𝑃 = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

 

where Pn is the precision at the nth threshold, while Rn and Rn-1 are the recall values at 

the nth and (n-1)th threshold, respectively.  
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Other common metrics include accuracy, the F1 score, which is the harmonic mean 

of precision and recall, and the Dice score, also known as the Dice Similarity Coeffi-

cient. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

2.4 Privacy Considerations and Adversarial Attacks 

Along with the benefits posed, AI comes with privacy challenges and ethical consider-

ations. Understanding these concerns and potential malicious events, as well as devel-

oping robust safeguards is crucial for harnessing the full potential of AI while protect-

ing patient rights and maintaining trust in oral healthcare systems. 

ML relies upon vast data, including sensitive personal information, and respecting 

individuals’ privacy rights and obtaining proper consent for data usage is paramount. 

The ethical aspects are discussed in Chapter 10, so this section will focus on the robust-

ness and safety of ML models in terms of privacy and adversarial attacks, which are 

often not sufficiently considered. Existing works on privacy protection can be classified 

into three groups, based on the role of ML in privacy [29]: 

1. Privacy of data for ML models. This includes making both the input and 

output data, as well as ML model parameters private throughout the process, 

as the privacy threat may appear at any stage. Most of the research investigated 

the use of differential privacy in ML and DL models. 

2. ML-enhanced privacy protection. Works in this group employ ML models 

as a tool for improving privacy protection. 

3. ML-based privacy attack. In contrast to the previous group, ML can also be 

used as an attacking tool. Especially DL systems may surpass conventional 

privacy-preserving methods, necessitating a discussion of such new threats 

and corresponding solutions [30]. 

The classification is further expanded in Figure 10. 
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Fig. 10. The proposed taxonomy of privacy and ML [31]  

Adversarial attacks involve deliberately crafting subtle input perturbations to de-

ceive ML models into making incorrect predictions, highlighting their vulnerability in 

robustness. Figure 11 shows how perturbations can confuse the AI model and affect its 

final output. 

Fig. 11. Visualizing a medical adversarial example with predictions under different pertur-

bations sizes ϵ. Predictions labelled in red indicate incorrect predictions. [32] 
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The success of adversarial attacks is due to the lack of generalization in the low 

probability space of data [33]. Some popular adversarial attacks proposed for natural 

images and applied to medical images include the Fast Gradient Sign Method (FGSM), 

Basic Iterative Method (BIM), Projected Gradient Descent (PGD), Jacobian-based Sa-

liency Map Attack (JSMA), and Universal Adversarial Perturbation (UAP). In some 

studies, however, these adversarial models are intentionally incorporated into the 

trained DL models [31], because adversarial training is one of the most effective ap-

proaches to defending against adversarial attacks [34]. As a result, the DL models 

trained on a mixture of clean and perturbed data become more resistant to adversarial 

attacks.  

3 Applications of Machine Learning in Oral Health 

Just like medicine and other fields, oral health is undergoing a revolutionary transfor-

mation thanks to the quick development of ML and AI in general. AI enables the ex-

traction of significant insights from oral health records, photographs, and other relevant 

sources by leveraging the power of algorithms and large volumes of data. In the coming 

sections, we will review a few ML applications in oral health and how they could con-

tribute to improving oral health outcomes, enhancing patient care, and shaping the fu-

ture of dentistry. 

3.1 Applications in Oral Cancer Diagnosis 

Oral cancer has become a serious global public health concern. Squamous cell carcino-

mas (SCCs), which are aggressive malignancies with a high propensity to spread locally 

and distantly, account for most oral cancers. It has also been observed that oral SCC 

(OSCC) has considerable implications on patients’ post-treatment quality of life due to 

its location and the disease’s aggressive attitude. Considering the commonly delayed 

diagnosis of oral cancer, the 5-year overall survival rate is roughly 51.7 % [35]. 

Cancer treatment is mainly dependent on tumour staging. However, discrepancies 

in staging methods have contributed to inaccurate prognoses in OSCC patients. ML 

algorithms can offer valuable support to clinicians by providing them with more precise 

and comprehensive diagnostic and prognostic information. A paper by Huang et al. [36] 

proposed a new optimized CNN model for the diagnosis of oral cancer. Another recent 

study presented an ML model for the prediction of oral cancer in patients with oral 

leukoplakia and oral lichenoid mucositis [37], which accounts for age, sex, tobacco 

usage, alcohol consumption, diabetes status and 10 other parameters. This proves that 

by leveraging large data sets and analysing complex patterns and features within histo-

pathological images and patient data, ML can assist clinicians in making early informed 

decisions regarding appropriate treatment strategies, ultimately leading to improved 

survival rates for oral cancer patients. 

AI not only changes the scope of screening and enhances accessibility to early can-

cer detection but may further enhance diagnosis due to its accelerated workflow and 

accuracy compared to traditional human screening techniques. For instance, AI does 
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not suffer from observational fatigue, and compared to the naked eye, it is able to notice 

minute changes in the range of a single pixel at a higher rate [38]. 

 

3.1.1 Classification of Oral Lesions 

Oral cancer is frequently preceded by visible oral lesions known as oral potentially 

malignant disorders (OPMDs) that can be recognised during a clinical oral examina-

tion. The likelihood of malignant transformation associated with OPMDs makes their 

early identification crucial for lowering oral cancer morbidity and mortality. Oral le-

sions have a very heterogeneous appearance, which makes it difficult for healthcare 

practitioners to identify them and that can delay patient referrals to oral cancer experts. 

Recent advancements in computer vision have opened new possibilities for devel-

oping technologies that can automate the screening of the oral cavity. These technolo-

gies can provide real-time feedback to healthcare professionals during patient exami-

nations and enable individuals to perform self-examinations. The existing literature on 

image-based automated diagnosis of oral cancer has primarily emphasised using spe-

cialised imaging techniques like optical coherence tomography, hyperspectral imag-

ing, and autofluorescence imaging. These advanced imaging modalities offer unique 

capabilities for capturing detailed information about the oral tissues and detecting po-

tential abnormalities or early signs of cancer. There are also attempts to detect and 

classify OPMDs using ML in photographs [22]. This problem can be formulated as a 

classification, object detection, as well as segmentation task (Figure 12), and various 

DL architectures have been tested, including ResNet-152, DenseNet-161, Inception-v4 

and EfficientNet-b4 [39]. Regardless of the modality, image analysis using DL algo-

rithms can provide a useful second opinion for non-expert clinicians, assisting them in 

making timely and informed decisions regarding patient care [40].  

.         

Fig. 12. Different types of image recognition tasks showing semantic segmentation (left), in-

stance segmentation (centre) and object detection (right) [38] 

3.1.2 Cancer detection using breath samples 

Exhaled breath analysis is another interesting field of research. The method assesses 

exhaled breath for volatile organic compounds (VOCs) which serve as biomarkers for 

many diseases and metabolic conditions. Gas chromatography combined with mass 

spectrometry is used to analyse VOCs, but other methods, such as proton transfer reac-

tion mass spectrometry have been tested as well [41]. The advantages of this method 

for disease identification and monitoring include non-invasiveness, cost-effectiveness, 

and real-time point-of-care disease diagnosis.  
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In relation to OSCC, electronic nose technologies, such as Near-Infrared Optical 

Nose (NIRON), have been able to distinguish OSCC, lung cancer, and a control group 

based on VOCs in breath samples [42]. A recent study investigated the possibilities of 

ML techniques, such as multilayer perceptron (MLP) and probabilistic neural networks 

(PNN), in electronic nose technologies for the detection of oral cancer [43]. ML tech-

niques were also used for the identification of signature biomarkers of OSCC among 

compounds detected using gas chromatography and mass spectrometry to distinguish 

OSCC patients from healthy smokers [44]. 

3.1.3 Tumour classification based on genetic data 

Prior to cancer treatment, the histopathological analysis is performed to confirm the 

diagnosis, as well as for staging and grading. However, some tumours with the same 

histopathological classification can exhibit varying responses to the proposed therapy. 

This discrepancy can be attributed to genetic variations and environmental factors that 

lead to alterations in the biological behaviour of cancer cells. Therefore, there is a grow-

ing need for diagnostic models that incorporate genetic characteristics alongside mor-

phological features, enabling the prediction of the biological behaviour of the cancer 

and hence enhancing treatment selection [45]. A recent study examined such models to 

improve the efficiency of personalized cancer treatment [46]. The ML diagnostic tool 

performed exceptionally well in the diagnosis of OSCC, and it also showed that gene 

expression is a more important element in classifying cancer types than its histological 

traits. Figure 13 shows the workflow of the study [46] and Table 2 summarizes relevant 

research papers on the use of ML in oral cancer and OPMDs. 

 

Fig. 13. Workflow of the study by Pratama et al. [46]. 
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Table 2. Overview of papers regarding oral cancer 

3.2 Diagnosis of Dental Caries 

Dental caries is one of the most prevalent diseases in the world. Caries is characterized 

by the localised destruction of dental hard tissues by acidic byproducts of bacterial fer-

mentation of dietary carbohydrates. Both the crown and the root of teeth can be affected 

by caries [47], and if not treated, caries can ultimately result in tooth loss and a decline 

in quality of life [48]. On the other hand, timely detection of caries can reduce the in-

vasiveness of the treatment or avoid it entirely [49]. ML can be used either for the 

detection of caries in images, or to predict its development from demographic data [50]. 

Table 3 shows some recent works related to the diagnosis and treatment of dental caries, 

and the topic is further addressed in Chapter 7 dedicated to the use of AI in cariology. 

3.2.1 Detection of Dental Caries in Radiographs 

Radiographs are crucial especially in approximal caries detection, as proximal tooth 

surfaces can hardly be visualised otherwise [51], and a growing number of studies using 

AI to identify caries have been recently published [52]. For example, Lee et al. devel-

oped a U-Net model for identifying dental caries from bitewing radiographs [53]. With-

out any pre-processing, the bitewing radiographs were used to train the CNN model, 

and it was confirmed that the proposed model could aid dental professionals in making 

more accurate diagnoses of dental caries in real-world clinical situations. In another 

study, Lian et al. [49] developed a model employing nnU-Net and DenseNet121, which 

was used to classify lesion progression after the nnU-Net technique had segmented the 

Year  Author Summary ML architecture used 

2020 Kowalski et al. [35] Survivability of Oral cancer  

2020 Kar et al. [38] AI and Oral Cancer screening DCNN,CNN,SVM,DBN 

2020 Tanriver et al. [40] Detection of oral lesion with DL U-Net, R-CNN,YOLO 

2020 Welikala et al. [23] Classification of Oral Lesions R-CNN,ResNet,RPN 

2020 S.Das et al. [41] Viability of Breath Analysis  

2021 Mentel et al. [44] Breath analysis for oral cancer diagnosis kNN,LR,RF 

2021 Pratama et al. [46] Oral cancer and gene expression with ML CNN 

2023 Adeoye et al. [37] Prediction of Oral cancer with ML SVM,MLP,LDA 

2023 Bhatt et al. [45] Cancer detection from genomic data SVM,kNN,CNN 

2023 Huang et al. [36] Diagnosing Oral cancer with DL CNN 
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carious lesions. Finally, the authors introduced a dropout mechanism and label soften-

ing to address the overfitting phenomena during model training, ensuring that it 

achieves the greatest potential performance. While there were many other studies on 

caries detection in radiographs and other images, e.g. photographs, it is beyond the 

scope of this chapter to examine them in detail. 

3.2.2 Prediction of Dental Caries from Demographic Data 

As dental caries is a highly prevalent oral disease, its prediction is a crucial aspect of 

preventive dentistry. Clinical evaluation and risk assessment are the mainstays of con-

ventional procedures. However, the use of demographic data to forecast the risk of den-

tal caries has become more popular with the development of ML. 

Kang et al. used the data obtained from the 2018 Korean Children's Oral Health 

Survey and analysed them using various models including Gradient Boosted Decision 

Tree (GBDT), Random Forest (RF), Logistic Regression (LR), Support Vector Ma-

chine (SVM), and LSTM [54]. The models performed well and could be used as a di-

agnostic tool to find individuals affected by caries. Additionally, the models can offer 

helpful guidance for creating a plan to prevent and treat caries, which can significantly 

decrease the time required for patient diagnosis and expenditures associated with caries. 

Toledo et al. proposed to use ML and predictors gathered from a 10-year prospec-

tive cohort study performed in children aged 1 to 5 years in southern Brazil to construct 

a caries prognosis models in primary and permanent teeth [55]. The development of 

caries was initially investigated in 2010 and then again in 2012 and 2020. As a part of 

the study, information on behavioural, clinical, psychological, psycho-social, and de-

mographic aspects were collected. LR was used along with the DT, RF and extreme 

gradient boosting (XGBoost). All models exhibited an area under the ROC curve 

(AUC) above 0.70 in predicting primary tooth caries after a two-year follow-up, with 

baseline caries severity being the best predictor [55]. 

Table 3. Recent works on dental caries using ML models. 

Year  Author Summary ML models Used 

2021 Lian et al. [49] DL in Caries Detection and Classification DenseNet, nnU-Net 

2021 Lee et al. [53] Early Caries Detection using radiographs U-Net, R-CNN,YOLO 

2022 Reyes et al. [48] ML in Diagnosis and Prognosis of Dental Caries - 

2022 Kang et al. [56] Prediction of Caries using ML and Personalised medicine ANN, CNN, LSTM 

2022 Talpur et al. [57] ML algorithms in diagnosis of caries - 

2023 Martins et al. [52] ML in X-Ray diagnosis for oral health - 

2023 Toledo Reyes et al. [55] Early Childhood Predictors for Dental Caries LR, RF, XGBoost, DT 
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3.3 Other applications 

The applications of ML in oral health encompass a diverse array of topics, showcasing 

the versatility and adaptability of ML algorithms in addressing numerous challenges 

faced by dental professionals and researchers. By harnessing the power of AI, these 

applications aim to augment traditional dental practices, improve clinical decision-

making, optimize treatment strategies, and enable more personalized and effective pa-

tient care. In this section, we will explore AI applications in other dental fields, and as 

in previous sections, Table 4 shows an overview of selected studies in these fields. 

3.3.1 Periodontitis 

Periodontitis is another highly prevalent oral condition caused by bacterial biofilm, but 

it is also affected by genetic and environmental factors, particularly cigarette smoking 

[58]. Periodontitis is a common cause of tooth loss in adult and elderly patients, because 

it gradually destroys the periodontal connective tissue and bone support. Furthermore, 

periodontitis is associated with various systemic diseases and an increased risk of can-

cer [50], making its prevention, timely diagnosis and adequate management highly im-

portant not only for oral health. 

In 2020, Chang et al. [59] created a DL hybrid method for automatic periodontitis 

staging based on bone loss in panoramic radiographs. The proposed hybrid framework 

combined a DL architecture for bone level detection and traditional Computer-Aided 

Diagnosis (CAD) processing for classification. The overall intraclass correlation coef-

ficient value between the generated model and radiologists' diagnosis surpassed 0.9, 

indicating very accurate automatic periodontal bone loss diagnoses. 

Other studies used ML techniques for predictive modelling. Nasir et al. [60] used 

American and Taiwanese national survey data and explored potential periodontitis pre-

dictors shared between the two datasets. Ten machine learning models were trained to 

predict the presence of periodontitis, which included AdaBoost, Artificial Neural Net-

works (ANNs), DT, Gaussian process, k-NN, linear support vector classification, linear 

discriminant analysis, LR, RF, and Naïve Bayes. The obtained results concluded that 

the ANN model had a high accuracy. In another study, Troiano et al. [61] designed and 

validated models for the prognostic prediction of molar survival after periodontitis 

treatment. Along with LR, they also built models based on SVM, k-NN, DT, RF, ANN, 

Gradient Boosting and Naïve Bayes. All the models showed promising results with an 

AUC value over 0.7. An ensemble method combining LR with neural networks reached 

an AUC of 0.759, making it the most reliable algorithm in the three validation cohorts. 

Kim et al. [62] proposed an alternative approach, developing an ML model for 

chronic periodontitis prediction based on salivary bacterial copy number, which was 

measured in healthy individuals and patients with chronic periodontitis using PCR. 

Based on the severity of periodontitis, they used ANN, SVM, LR, and RF to identify 

bacterial combinations that could serve as a biomarker for periodontitis diagnosis and 

2023 Kang et al. [54] Dental Caries Prediction Model Using ML for DSS GBDT, RF, LR, SVM, LSTM 
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staging. Figure 14 depicts the ML workflow of this study. Further information on the 

use of AI in periodontology can be found in Chapter 4. 

 

Fig. 14. ML workflow for the prediction of chronic periodontitis severity using qPCR data [62]. 

3.3.2 Endodontics 

In endodontics, pulpitis, pulp necrosis, and apical periodontitis represent the main 

causes for root canal treatment. Applications of ML in this field include examination 

of teeth anatomy, evaluation of the treatment difficulty or the detection and classifica-

tion of periapical radiolucencies. 
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As an example of root anatomy examination, Hiraiwa et al. [63] successfully 

used a DL system to determine if a second distal root is present in mandibular first 

molars. The analysis was done on apical radiographs, and cone-beam computed to-

mography (CBCT) was used as a gold standard. The analysis of root anatomy is also 

a part of the treatment difficulty assessment, which is usually done following the 

Endodontic Case Difficulty Assessment Form by the American Association of En-

dodontists [50]. Mallishery et al. [64] built an SVM model to assess the treatment 

difficulty using this form. The model had a sensitivity of almost 95 %, and it was 

concluded that the automated difficulty assessment could increasing the speed of 

decision-making and referrals if necessary. 

Other studies focused on periapical lesions in radiographs and CBCTs. For in-

stance, Orhan et al. [65] employed a deep CNN to locate periapical lesions in CBCT 

scans and calculate the lesion volume, achieving promising results. Some research-

ers aimed at a clinically difficult task of differentiating periapical granulomas from 

radicular cysts in CBCTs [66] and panoramic radiographs [67]. Both the referenced 

studies showed excellent results, which could lead to a more efficient referral strat-

egy and subsequent treatment efficacy. A thorough overview of AI applications in 

endodontics is available in Chapter 8. 

3.3.3 Orthodontics 

Orthodontic treatment involves straightening or repositioning teeth in order to improve 

occlusal function as well as aesthetic appearance. Applications of AI in orthodontics 

can improve the efficiency of treatment planning, and some of them are outlined in this 

section. For more details, please refer to Chapter 6. 

Prior to the treatment, orthodontist thoroughly analyse the clinical situation and ra-

diographs to compile a suitable treatment plan. Several studies used DL architectures 

for landmark detection in cephalometric analyses. However, there were also studies 

which focused on the analysis of soft tissues in facial images. Rao et al. [68] developed 

a facial landmark recognition model based on the Active Shape Model (ASM) model 

and the YOLO architecture, which was more accurate in facial landmark detection and 

measurement compared to their manual assessment. 

ML techniques may also help in choosing whether to extract premolars in cases with 

malocclusion that includes severe tooth crowding. Jung and Kim [69] developed a 

back-propagation neural network-based model for diagnosing extractions, which had a 

success rate of 93 % in distinguishing extraction and non-extraction cases. In another 

study, Leavitt et al. [70] attempted to develop a generalizable ML algorithm from a 

large sample of orthodontic providers to accurately predict orthodontic extraction pat-

terns in a racially and ethnically diverse populations. In total, 55 cephalometric and 

demographic data were provided to the ML models based on RF, LR, and SVM. The 

results differed for various extraction patterns, so were successful while some were 

rather inaccurate. 

With the expansion of digital dentistry, tooth segmentation in 3D models has be-

come increasingly important in orthodontic treatment planning and outcome prediction. 

Tian et al. [71] suggested a method that makes use of sparse voxel octree and 3D CNNs, 

which offered segmentation accuracy of 89.8 %. In a similar task, Xu et al. [72] created 
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a 2-level hierarchical CNN framework that labels the teeth, gingiva, and spaces between 

the teeth. The boundary was then fine-tuned using improved fuzzy clustering. For the 

segmentation of CBCT scans, Pei et al. [73] successfully applied the 3D exemplar-

based random walk, as its results agreed with manual segmentation, while Juodzbalys 

et al. [74] developed a novel DL method for tooth labelling in 3D intraoral scans. 

3.3.4 Dental Implantology 

Dental implants serve as a support for restorations of missing teeth, thereby playing a 

a crucial role in restoring function, aesthetics, and oral health in general. The placement 

of a dental implant is influenced by various factors such as bone density and anatomical 

structures, as well as oral and general health. All these factors must be carefully as-

sessed to ensure optimal outcomes, in which advanced AI technologies can assist by 

analysing imaging data, predicting potential complications, and providing precise treat-

ment planning tailored to the patient's unique conditions. 

In image analysis, several studies investigated the localization of anatomical struc-

tures, e.g. the mandibular canal. Its position is important during implant placement as 

it contains the inferior alveolar nerve and any damage to it could have long-term or 

permanent impact on the patient. In one of the studies, Kwak et al. successfully detected 

and segmented the mandibular canal on CBCT images using U-Net [75]. Image analy-

sis can also be used to determine the amount and quality of the available bone and its 

mineral density. For example, Sorkhabi et al. suggested using a CNN to assess alveolar 

bone density in 2019 [76]. 

Based on the provided data, ML can be also used to model treatment outcomes. Liu 

et al. [77] created an ML model that estimates the implant failure rate using the DT, 

SVM, LR and classifier ensembles based on bagging and AdaBoost. It was concluded 

that the model can help surgeons by choosing the optimal implant system and prostho-

dontics treatments for their patients [77]. Another insight was brought in the study by 

Ha et al. which indicated that the mesio-distal position of the inserted implant is the 

most significant factor determining its prognosis [78]. Further studies on the topic, as 

well as other uses of AI in dental implantology are presented in Chapter 5. 

3.3.5 Dental Age Estimation 

Dental age is thought to be a quick, precise and trustworthy method of age determina-

tion in growing children. In orthodontics, planning the treatment of various malocclu-

sions is closely related to the stage of maxillofacial growth. In paediatric dentistry, den-

tal age may be also important in certain cases, e.g. related to irregular tooth eruption. 

And skeletal growth is also relevant for prosthodontics and implant planning in adoles-

cent patients. Besides dental applications, dental age estimation is also important in 

forensic medicine, anthropology and bioarchaeology, as it may provide information 

about earlier populations [79]. 
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Over the years, several radiographic techniques for estimating dental age have been 

developed. These methods essentially identify the stages of tooth development in radi-

ographs (Figure 15) and code them in accordance with the readily available tables cre-

ated by various authors. The best-known of these are the Willems method, the Nolla 

method, the Haavikko method, and the Demirjian method. Recently, Cameriere's novel 

strategy has received a lot of attention and favour [79]. 

 

Fig. 15.  Example of single and multiple root teeth measurement [80]. 

Researchers have used the help of AI in estimating the dental age. One such study 

was conducted by Aljameel et al. [81] who used four CNN architectures and observed 

that the further they reduced the age range of the experiment, the finer the models 

learned and functioned. Shen et al. [82] constructed three ML models, namely LR, RF 

and SVM, to estimate children's dental age using the Cameriere’s method and to com-

pare them with the Cameriere’s formula. The results showed that the SVM, LR, and RF 

models were more accurate than the conventional approach represented by the Camer-

iere’s formula. This outcome encourages the use of ML techniques for dental age esti-

mation. 

Table 4. Selected works related to ML in the other dental fields. 

Year  Author Summary ML model used 

2020 Sun et al. [50] ML applications in stomatology - 

Periodontitis 

2023 Troiano et al. [61] 
LR and ML model for prediction of Molar 

Loss 

LR, SVM, ANN, RF, DT, 

Naïve Bayes 

2022 Bashir et al. [60] 
Comparison of ML models for periodonti-

tis prediction 
- 

2022 Chang et al. [83] 
DL for radiographic diagnosis of periodon-

titis 
CNN 

2020 Chang et al. [59]  DL hybrid method for PBL CNN 

2020 Kim et al. [62] 
Prediction of Periodontits from Bacterial 

Copy number 
RF, SVM, LR 

Endodontics 
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2023 Ver Berne et al. [67] 
Classification of radicular cysts and periap-

ical granulomas 
MobileNet, YOLO 

2020 Orhan et al. [65] 
Detecting periapical pathosis on cone-

beam CT scans 
CNN 

2020 Mallishery et al. [64] Difficulty assessment using ML SVM 

2019 Hiraiwa et al. [63] 
Recognition of dental root structure from 

radiographs 
AlexNet, GoogleNet 

2015 Okada et al. [66] 
Diagnose dental periapical lesions in cone 

beam CT scans 
LDA-AdaBoost classifier 

Orthodontics 

2023 Leavitt et al. [70] 
Prediction of orthodontic extraction pat-

terns 
RF, LR, SVM 

2019 Rao et al. [68] Facial landmark recognition model ASM, YOLO 

2019 Juodzbalys et al. [74] 
Automatic labelling teeth using dental sur-

faces from 3D intra oral scanner 
MeshSegNet 

2019 Tian et al. [71] 
Automatic classification and segmentation 

of 3D dental model 
CNN 

2018 Xu et al. [72] 3D tooth segmentation and labelling CNN 

2016 Pei et al. [73] Segmenting Come-beam CT images Random Walk 

2016 Jung and Kim [69] Model for diagnosis of extraction 
Back propagation neural 

network 

Dental Implantology 

2020 Kwak et al. [75] Mandibular Canal detection CNN 

2019 Sorkhabi et al. [76] Classification of alveolar bone density DT, AdaBoost 

2018 Liu et al. [77] Predicting failure of dental implants CNN 

2018 Ha et al. [78] 
Factors influencing prognosis of dental im-

plants 
KLMS, FEM 

Dental Age Estimation 

2023 Aljameel et al. [81] Dental Age Estimation using AI CNN 

2021 Shen et al. [82] ML assisted Cameriere method LR, RF, SVM 

4 Conclusion 

ML has emerged as a powerful tool in oral health, offering significant potential in var-

ious aspects of diagnosis, personalised treatment planning and prediction of outcomes. 

This is achieved using various ML techniques, which can analyse clinical records and 

patient data, as well as DL models frequently used for image analysis and other tasks. 

However, the widespread adoption of AI in oral health also raises significant concerns 



23 

in terms of ethics and privacy, and attention also must be paid to adversarial attacks. 

Addressing these challenges requires collaborative efforts of all stakeholders to develop 

robust safeguards for the responsible use of AI in dentistry. 
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